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Abstract—Although existing CNN-based saliency 
identification techniques are especially made for RGB images, 
not light fields, light field saliency detection can take advantage 
of the rich visual properties of light field (LF) to highlight the 
salient regions. A three-stream cross-modal feature aggregation 
network is suggested for 4D light field saliency detection in order 
to address this issue. Three smaller networks are configured to 
analyze the depth map, all-focus image, and focal stack, 
respectively, in order to fully take advantage of the rich visual 
properties of light field. Next, cross-level features are aggregated 
top-down using feature aggregation modules. In the end, a cross-
modal feature fusion module is made to combine the combined 
features of different modalities from the three sub-networks, 
enabling fast and accurate identification of salient objects. In 
comparison to state-of-the-art (SOTA) methods, extensive 
experiments on three benchmark datasets demonstrate the 
effectiveness and superiority of the proposed algorithm on five 
evaluation metrics, both qualitatively and numerically. 

Index Terms: saliency, light field, feature aggregation, depth 
map, and salient object identification. 

I. INTRODUCTION 

ALIENT object detection(SOD) refers to detect the most 

informative object that grab human attention, which has 

attracted increasing attention due to its importance in different 

kinds of applications, such as visual recognition [5], object 

tracking [3], and camouflaged object detection [1]. As is known 

to all, light field includes the RGB color information, and the 

directions of all incoming light that contains abundant geometric 

information of scene objects. Recently, With the development 

of light field imaging technology, light field has been exploited 

to enhance the performance of various tasks, including material 

recognition [4], depth estimation [2], and etc. 
Existing SOD methods can be roughly divided into 2D-RGB, 

3D-RGBD and 4D-LF saliency detection according to their input 

data. Most of them fit into the first category, and the rest are 

part of the last two categories. Among them, 2D-RGB SOD 

algorithms [6]–[12] have achieved promising progress in recent 

years, which profits from the great development of convolu- 

tional neural networks(CNN). But these methods usually acquire 
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mediocre performance when they encounter challenging scenes. 

The reasons are mainly about two aspects, one is the depen- 

dence of 2D-RGB methods on prior knowledge, the other is the 

deficiency of 3D visual information in limited RGB images. 

At the same time, 3D-RGBD SOD methods [13]–[21] have 

also attracted researcher’s interest, because depth map equiped 

with rich geometric information is helpful for understanding of 

contextual information of salient objects, and can improve the 

accuracy of saliency detection to some extent. However, depth 

map with low quality severely degrade the performance of SOD 

algorithms. 

Recently, with the popularity of light field camera, light field 

data is easy to obtain, which contains focal stack, all-focus 

image, and depth map. Focal stack displays various focus depth 

levels, and contains rich visual information. Consequently, light 

field has a good application prospect in 4D-LF SOD [23]–[30]. 

Still, most existing 4D-LF SOD methods have not taken full ad- 

vantage of the rich visual information of light field image, which 

just extract some hand-crafted features from light field. On the 

whole, such approaches have less been explored mainly because 

4D light field data is more difficult to tackle than 2D RGB image. 

Moreover, except for MoLF [30] and DLLF [29], CNN-based 

SOD methods have been ignoring from current researches in 

4D LF-SOD. In view of this, it is of importance to open up 

research of the CNN-like framework for 4D-LF SOD, as do 

2D-RGB and 3D-RGBD SOD approaches. Inspired by MoLF, 

to make use of CNN-like framework, a three-stream cross-modal 

feature aggregation network is proposed for 4D-LF SOD in this 

letter. In order to automatically extract discriminative features 

of various modalities, three sub-networks with similar network 

structure are designed in parallel to extract cross-level features 

from focal stack, depth map, and all-focus image separately. To 

make the best of the complementarity of cross-modal features, a 

specifically designed cross-modal feature fusion module is used 

to fuse these cross-modal features in a holistic perspective. 
In short, our main contributions are summarized as follows: 
1) We propose a three-stream cross-modal feature ag- 

gregation network for 4D-LF saliency detection, each 
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sub-network aggregates multi-scale multi-level features 

from single modality, and the cross-modal feature fusion 

module makes full use of features from different modali- 

ties. 

2) Compared with 20 SOTA 2D-RGB, 3D-RGBD and 4D-LF 

SOD approaches, extensive experiments on three datasets 

show that the proposed approach achieves superior per- 

formance on five evaluation metrics. 

 

II. RELATED WORKS 

As mentioned before, the existing SOD algorithms can be 

roughly summarized into 2D-RGB [31], 3D-RGBD, and 4D-LF 

saliency detection. From another point of view, these algorithms 

can be simply divided into traditional and CNN-based meth- 

ods. The former is mainly focus on the hand-crafted features 

which cannot deal with the challenging scenarios where the 

tacit assumption is not satisfied with, here we mainly discuss the 

CNN-based methods, which has achieved excellent performance 

recently. 

 

A. 2D-RGB CNN-Based Saliency Detection 

With the development and wide application of CNNs, a va- 

riety of CNN-based saliency detection approaches have been 

proposed in recent years. These approaches have been combined 

with contextual features [11], post-treatment steps [32], attention 

modules [11], refinement model [12], and etc. Li et al. [33] 

propose an end-to-end deep contrast network, which produces 

pixel-level saliency maps, and then improve the fused saliency 

map by a fully connected CRF model. Hou et al. [10] intro- 

duce short connections to the skip-layer structures within the 

HED architecture, which combines multi-scale feature maps, 

and fuses these feature maps to segment salient objects. Zhang 

et al. [34] present a generic aggregating multi-level convolu- 

tional feature framework, which integrate multi-level features in 

multiple resolutions and combine them to predict saliency maps. 

Soon afterwards, Deng et al. [12] propose a recurrent residual 

refinement network equipped with residual refinement blocks 

to learn the complementary saliency information of the inter- 

mediate prediction. Li et al. [21] create a contour-to-saliency 

network with two branches to predict contours and estimate 

pixel-level saliency, then automatically transfer contour knowl- 

edge to saliency detection without using any manual saliency 

masks. Liu et al. [11] propose a pixel-wise contextual attention 

network to learn contextual features to generate saliency map in 

the global and local form. 
By and large, CNNs can automatically extract low-level and 

high-level visual features, and conduct a mapping between 

images and prediction maps. But it is never wise to directly 

apply the existing 2D-RGB CNN-based models to light field, 

because these models are not well qualified for light field. In 

addition, 2D RGB image is deficient in 3D visual information. 

It is necessary to construct a novel CNN-based network for 

light field data. Detailed summaries about 2D-RGB CNN-based 

saliency detection can be found in [35]. 

 

B. 3D-RGBD Saliency Detection 

In the last three years, 3D-RGBD saliency detection attracts 

more and more attention of many researchers. Qu et al. [13] 

design a CNN-based RGBD SOD to automatically learn the 

interaction mechanism, and exploit hand-crafted features to 

train the CNN-based SOD model. Chen et al. [15], [16], [21] 

exploit cross-level complementarity and cross-modal comple- 

mentarity, and design multi-scale multi-path fusion network 

to fuse multi-level features from RGB or depth modality to 

predict saliency maps. Chen et al. [17] propose a three-stream 

attention-aware fusion network to extract RGB-D features and 

introduce channel-wise attention mechanism to adaptively se- 

lect complementary feature maps. Zhu et al. [18] present an 

independent encoder network to process depth cue, and utilize 

RGB-based prior-model to guide the main learning stage. Wang 

et al. [19] propose an adaptive fusion scheme with two-streamed 

CNN to fuse saliency predictions generated from the RGB 

and depth modalities. Piao et al. [20] propose a depth-induced 

multi-scale recurrent attention network which includes a depth 

refinement block to extract and fuse complementary RGB and 

depth features, a depth-induced multi-scale weighting module, 

and a recurrent attention module to generate more accurate 

saliency results in a coarse-to-fine manner. 

 

C. 4D-LF Saliency Detection 

4D-LF SOD is still in the early stage, only a few available 

models fall into this category, but such models have exhibited 

good prospects in some complex scenes. The pioneering work 

by Li et al. [23] builds the first light field saliency dataset, 

and demonstrates the practicability of detecting salient objects 

utilizing all-focus images and focal stacks of light field. Li 

et al. [24] also propose a weighted sparse coding framework to 

handle the heterogenous types of input (RGB, RGB-D and light 

field image). Zhang et al. [25] extend 2D contrast-based SOD 

method by introducing depth cue in connection with location and 

background prior into 4D-LF SOD, which reveal the advantage 

and effectiveness of light field. Zhang et al. [27] also introduce 

a computational SOD scheme by integrating various visual cues 

from light-field image, and present a benchmark dataset, named 

HFUT-Lytro. Very recently, Wang et al. [29] propose a fusion 

framework with two CNN streams where the focal stacks and 

all-focus images serve as the input, adversarial examples is used 

to help train the deep network and improve the robustness of 

its approach. Zhang et al. [30] introduce a light filed saliency 

dataset with 1462 samples, named DUTLF-FS, and propose a 

novel memory-oriented decoder tailored for 4D-LF SOD, which 

can precisely predict salient objects by means of Mo-SFM and 

Mo-FIM modules. 
Some visual examples are shown in Fig. 1. Obviously, benefit 

from the rich visual information of light field image, these 

4D methods perform better than 2D and 3D SOD methods in 

some challenging scenes, for instance, complex and cluttered 

background, similar foreground and background, and low in- 

tensity environment. However, relatively few efforts have been 

spent in modeling 4D SOD by taking all input information into 

consideration, this leads to insufficient multi-modal fusion. 

 

III. PROPOSED METHOD 

A. Top-Down Feature Aggregation Stream 

The overall architecture of the proposed approach is shown 

in Fig. 2. The three stream networks take all-focus image, depth 
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Fig. 1. Image and ground truth(GT) of three samples with the corresponding 
saliency map of our algorithm and other SOTA approaches including MoLF [30], 
DMRA [20], and GCPNet [6]. 

Specially, the last convolution block, denoted as CBlock-5, 

followed by a CBR module that is composed of a convolutional 

layer, a Batch Normalization layer, and a ReLU operation, which 

can generate more accurate high-level semantic feature. 

 

B. Cross-Modal Refined Feature Fusion 

As shown in Fig. 2, in order to make full use of the com- 

plementarity of cross-modal features, a cross-modal feature 

fusion module, denoted as CFFM, is designed to effectively fuse 

cross-modal features from the three sub-networks to generate the 

final saliency prediction map. 

In particular, to sufficiently capture the cross-modal com- 

plementary information, the CFFM is designed as a two-stage 

fusion process. In the first stage, we learn a prediction map for 

feature fusion of the all-focus stream and focal stack stream. 

In the second stage, the fused prediction map in first stage, and 

the feature map of depth stream, are further fused to generate 

the final saliency map in the same way. In each fusion stage, 

inspired by AFNet [19], we first concatenate the features of 

two streams, and then the fused prediction map is fed into two 

1 × 1 convolutional layers to suit the intermediate supervision 
and reduce interference during training. It is described by the 
following formulations. 

Fs1  = Conv1×1(Concat(F
FS

,F
AF

 )) (2) 
sw ref ref 

Fs1 = F
AF

 ⊗ Fs1 + F
FS

 ⊗ (1 − Fs1 ) (3) 
fuse ref sw ref sw 

 
Fig. 2.  Overall pipeline of the proposed approach for 4D-LF SOD. Fs2 = Conv1×1(Concat(F

s1  ,F
DM

 )) (4) 
sw fuse ref 

Fs2 = Fs1 ⊗ Fs2 + F
DM

 ⊗ (1 − Fs2 ) (5) 

map, and focal stack as input respectively. The all-focus image 
fuse fuse sw ref sw 

across RGB channels is fed into the first stream, all slices of Here F
F S

,  F
AF

 and F
DM

 are features from the three all-focus, 
ref ref ref 

focal stack are concatenated and then fed into the second stream. focal stack and depth stream sub-networks, respectively. F
s1 

Follow the practice in [15], [17], the depth map is encoded into is fused prediction map in first stage, and F
s2 is the final 

three-channel HHA representation and then fed into the third 

stream. Following EGNet [8], we insert three convolutional 
saliency map.⊗ 

fuse 

is pixel-wise multiplication operator. 

layers on each side path to get more discriminative context 

features, each convolutional layer is followed a ReLU layer to 

ensure the nonlinearity. As everyone knows, high-level feature is 

helpful to locate salient objects and remove noises. By contrast, 

low-level feature can provide more spatial structure information. 

Obviously, these two level features are complementary with each 

other [6], [9]. Furthermore, the global contextual information is 

also conducive to detecting more complete and accurate salient 

objects. Therefore, a cross-level feature refinement module, 

denoted as CFR, is introduced to refine features in top-down 

manner. Multiple CFR modules are connected in series from 

top to bottom to obtain more discriminative features. 
 

Specifically, the CFR module receives the feature f
i
 passed 

C. Loss Function 

In the training stage, training set can be represented as T = 
(FSi, AFi, DMi, GTi)

N
 , N is the total number of samples with 

M piexls in the training set, FSi, AFi, DMi, GTi are focal stack, 
all-focus image, depth map, and ground truth map respectively. 
There are three saliency maps generated by the proposed model, 

denoted as S
AF

 , S
FS

, and S
DM

 respectively. The proposed 
three-stream feature aggregation network is trained to extract 
and fuse cross-level and cross-modal features in each stream sub- 
network, which hearten Complementary integration and refine 
the multiple-level feature map gradually. The cross-entropy loss 

of the i
th

 level is defined by 
the three convolutional layers on each side path and the feature N  M 

f
i+1 from the contiguous upper-level CFR module, f

i
 is the L

i
 = − 
Σ Σ 

gt  log F
ij
 + (1 − gt ) log

 
1 − F

ij 
 

feature generated by the i-th side path. Through this top-down 

supervision, these features are gradually aggregated and refined. 
Unlike previous works (PoolNet [22]) that often integrate these 

i=1 j=1 

 
where F

ij
 = ωiF

i
 + ωi+1F

i+1,i = 2, 3, 4. 
(6) 

s ref ref 

features by concatenation or addition operation, we directly 

multiply them together to restrain the background noises as 

follows. 

Consequently, the cross-modal multiple-level feature loss 

between predicted feature map and ground truth map can be 

represented as 

f
i
 = f

i+1 ⊗ Conv1×1(f
i
)) (1) Ls = LAF + LFS + LDM

 (7) 
h h l s s s 
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In the two-stage fusion process, same to AFNet [19], the 

switch loss between single-modal prediction map and pseudo 

ground truth, is calculated by cross-entropy loss, which can be 

represented as 

Lf = Ls1 + Ls2
 (8) 

f f 

Therefore, the total loss fuction is defined by 

L = Lf + Ls (9) 
 

IV. EXPERIMENTS AND ANALYSIS 

A. Experiments Setup 

We conduct experiments on three benchmark datasets de- 
signed for 4D-LF SOD: LFSD [23], HFUT-Lytro [27], and 
DUTLF-FS dataset [29], [30]. The train set of DUTLF-FS 
is used for training, and all images are uniformly resized to 

256 × 256. Six widely-accepted metrics are adopted to verify 
the effectiveness of the proposed method, including precision- 
recall(PR) curves, F-measure [36], Weighted F-measure [37], 

mean absolute error(MAE) [38], Structure-measure(Sm) [39] 

and Enhanced-alignment measure(Em) [40]. 

 

B. Ablation Analysis 

To validate the proposed CFR and CFFM modules, we further 

analyze the results of the following cases: the model without 

CFR and CFFM module, the model without CFR but with CFFM 

module, the model with CFR but without CFFM module, the 

model with CFR and CFFM module, denoted by SNO−Both, 

SNO−CF R, SNO−CFFM , SBoth. From the Table I, it can be seen 
that the CFR and CFFM modules are indispensable for saliency 
detection. The former is used to integrate multiple level visual 

features, and the latter is used to fuse cross-modal features or 

prediction maps. 

 

C. Comparison With the State-of-The-Art 

The proposed method is compared with 11 state-of-the-art 

2D, 3D and 4D SOD approaches, including four 2D CNN-based 

methods:EGNet [8], CPD [7], GCPNet [6], and F3Net [9]; two 

3D methods: AFNet [19], and DMRA [20]; and five 4D methods 

for light field: LFS [23], WSC [24], DILF [25], MCA [27], 

and MoLF [30]. For a fair comparisons, the saliency maps of 

other SOTA methods are generated by official codes by using 

the recommended parameter settings provided by the authors or 

directly provided by authors. 

For qualitative evaluation, we draw the Precision, Recall, 

F-measure, Weighted F-measure, and MAE scores in Fig. 3. As 

we can see, the proposed algorithm achieves better results com- 

pared with other SOTA approaches, which achieves the lowest 

MAE score, and obtains the best scores on HFUT-Lytro datasets 

across all four evaluation metrics. Some selected representative 

samples of the visual comparison of our method and the current 

SOTA methods are further shown in Fig. 4. It can be observed 

that the proposed approach is able to accurately detect complete 

salient objects from various challenging scenes, including big 

salient object as shown in the 3 rd row, clutter background as 

shown in row 4 and 5, small salient objects as shown in rows 6, 

 
 

 

 
Fig. 3. Precision, Recall, Weighted F-measure, and MAE scores of our method 
and other SOTA approaches on HFUT-Lytro [27] datasets. 

 

 
Fig. 4. Visual comparison of saliency maps from ours and other SOTA 
approaches for 4D-LF SOD. 

 

 

and similar foreground and background color as shown in the 

last row. 

Based on above-mentioned comparison, an interesting obser- 

vation should be noted: the latest CNNs-based SOD methods, 

especially those methods that make use of the characteristics of 

light field, which obtains better results than others. This indicates 

that both cross-modal light field features and cross-level features 

extracted by CNN-based model are significant and promising for 

SOD. It is a wise choice to take advantage of both cross-modal 

features from light field data, and cross-level multi-scale features 

from CNN-based method. 

 

V. CONCLUSION 

Our goal in this letter is to maximize light field visual 

information for SOD. It is suggested to use a three-stream 

cross-modal feature aggregation network to identify objects of 

interest in a light field. In order to combine and enhance the 

multiple-level features within each sub-network, a few cross-

level feature aggregation modules are introduced. A cross-

modal feature fusion module is meant to fuse the prediction 

maps from various modalities in order to further capitalize on 

the complementarity among the three modalities. According to 

experimental data, the suggested strategy outperforms SOTA 

approaches across a range of assessment measures. It has also 

been demonstrated that SOD may be effectively and profitably 

achieved by exploiting feature extraction capabilities and 

mining rich visual information of light fields.
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